Semiorthogonal decompositions and stability conditions

Antonios-Alexandros (Alekos) Robotis (in collaboration with Jeffrey Jiang and Daniel Halpern-Leistner)

Cornell University

The main characters

- 1. C = (pre-)triangulated (dg-)category,
 - $D^{b}_{coh}(X)$ for X a smooth projective variety; or
 - $D^b \pmod{A}$ for A a finite dimensional algebra.
- 2. Stab(\mathcal{C}) = complex manifold of stability conditions on \mathcal{C} (see [2])
- 3. Semiorthogonal decompositions: full triangulated subcategories $\{C_i\}_{i=1}^n$ of C that generate C and s.t. $\operatorname{Hom}(C_j, C_i) = 0$ for i < j.

Stability conditions [1, 2]

Slicing \mathcal{P} on \mathcal{C} : collection of full additive subcat. $\{\mathcal{P}(\phi): \phi \in \mathbb{R}\}$ s.t.

- 1. $\mathcal{P}(\phi)[1] = \mathcal{P}(\phi + 1)$
- 2. for $\phi_1 > \phi_2$ and $E_i \in \mathcal{P}(\phi_i)$ for i = 1, 2, $\text{Hom}_{\mathcal{C}}(E_1, E_2) = 0$
- 3. for any $E \in \mathcal{C}$, there are maps $0 = E_0 \to E_1 \to \cdots \to E_n = E$ with $F_i = \operatorname{Cone}(E_{i-1} \to E_i) \in \mathcal{P}(\phi_i)$ for $1 \le i \le n$ and $\phi_1 > \cdots > \phi_n$.

 $E \in \mathcal{P}(\phi)$: semistable of phase ϕ ; (3) is called : Harder-Narasimhan (HN) filtration of E; F_i called the HN factors of E.

Prestability condition on $C: \sigma = (Z, \mathcal{P})$ where $Z \in \text{Hom}(K_0(\mathcal{C}), \mathbb{C})$ s.t. $\forall \phi \in \mathbb{R}$ and $E \in \mathcal{P}(\phi), Z(E) = m(E) \cdot \exp(i\pi\phi)$ with $m(E) \in \mathbb{R}_{>0}$ (mass)

A stability condition on \mathcal{C} also has the support property of [1, 4]. The collection of all stability conditions, $\operatorname{Stab}(\mathcal{C})$, has a canonical complex manifold structure [2].

Stability conditions on varieties

- X: complex projective variety, $\operatorname{Stab}(X)$ = stability conditions on $\operatorname{D}^{\operatorname{b}}(X)$ s.t. Z factors through $K_0(X) \xrightarrow{\operatorname{ch}} H^*_{\operatorname{alg}}(X;\mathbb{C})$.
- Stab(X) → Hom($H^*_{alg}(X; \mathbb{C}), \mathbb{C}$) given by $(Z, \mathcal{P}) \mapsto Z$ is a covering. Stab(X) is a (noncompact) \mathbb{C} -manifold modeled on $H^*_{alg}(X; \mathbb{C})^\vee$

Notation

- σ_{\bullet} denotes a path $t \mapsto \sigma_t$ from $[0, \infty) \to \operatorname{Stab}(\mathcal{C})$
- given $E \in \mathrm{Ob}(\mathcal{C}), \, \ell_t(E) := m_{\sigma_t}(E) + i\pi\overline{\phi}_{\sigma_t}(E)$
- $\phi_t^+(E)$ = largest phase of a σ_t -HN factor of E, $\phi_t^-(E)$ is analogous

 $\overline{\phi}_{\sigma_t}(E)$ is an average phase function generalizing the phase function of σ_t -semistable objects to *all* objects.

Quasi-convergent paths

1. $0 \neq E \in \mathcal{C}$ is limit semistable with respect to σ_{\bullet} if:

$$\lim_{t \to \infty} \phi_t^+(E) - \phi_t^-(E) = 0$$

The class of such objects is denoted $\mathcal{P}_{\sigma_{\bullet}}$

- 2. σ_{\bullet} is called quasi-convergent if
- (a) all nonzero objects of \mathcal{C} have *limit* HN filtrations with subquotient objects in $\mathcal{P}_{\sigma_{\bullet}}$; and
- (b) for any $E, F \in \mathcal{P}_{\sigma_{\bullet}}$, $\ell_t(F) \ell_t(E)$ either converges as $t \to \infty$ or diverges along a well-defined ray $\mathbb{R}_{>0} \cdot e^{i\theta} \subset \mathbb{C}$.

Subcategories associated to qc. paths

Let $E, F \in \mathcal{P}_{\sigma_{\bullet}}$; we define total preorders:

- 1. $E \preceq^{i} F$ if $\lim_{t\to\infty} \phi_t(F) \phi_t(E) \leq \infty$
- 2. $E \leq F$ if $E \leq^{i} F$, and if $E \sim^{i} F$ then $\lim_{t \to \infty} \log \frac{m_t(E)}{m_t(F)} < \infty$
- ... and full subcategories of ${\mathcal C}$:
- \mathcal{C}^E : with objects with limit HN factors A s.t. $A \sim^{\mathrm{i}} E$.
- $\mathcal{C}_{\prec F}$: with objects with limit HN factors A s.t. $A \preceq F$
- $\mathcal{C}^E_{\prec F} = \mathcal{C}^E \cap \mathcal{C}_{\preceq F}$

Some comments:

- \mathcal{C}^E depends only on $[E] \in \mathcal{P}/\sim^i$; \preceq^i is total on \mathcal{P}/\sim^i
- $\mathcal{C}_{\prec F}$ depends only on $[F] \in \mathcal{P}/\sim$; \preceq is total on \mathcal{P}/\sim
- \sim refines \sim^i , so there is an induced map $c: \mathcal{P}/\sim \to \mathcal{P}/\sim^i$

(A version of) The main results of [5]

- 1. $E_1 \prec^i \cdots \prec^i E_n$ a complete set of representatives of \mathcal{P}/\sim^i :
 - \exists semiorthogonal decomposition $\mathcal{C} = \langle \mathcal{C}^{E_1}, \dots, \mathcal{C}^{E_n} \rangle$

2.
$$F_1 \prec \ldots \prec F_k$$
 a complete set of representatives of $c^{-1}(E_i)$: \exists filt. $\{\mathcal{C}_{\preceq F_1}^{E_i} \subset \mathcal{C}_{\preceq F_2}^{E_i} \subset \cdots \subset \mathcal{C}_{\preceq F_k}^{E_i} = \mathcal{C}^{E_i}\}$ s.t. $\forall j$:

$$\mathcal{C}_{\preceq F_j} = \langle \mathcal{C}^{E_1}, \dots, \mathcal{C}^{E_{i-1}}, \mathcal{C}^{E_i}_{\preceq F_j}
angle.$$

The main results cont.

- 3. $\mathcal{C}^{E_i}_{\preceq F_i}/\mathcal{C}^{E_i}_{\preceq F_{i-1}}$ admits a stability condition $\sigma^i_j=(Z^i_j,\mathcal{P}^i_j)$ with
- (a) $\mathcal{P}_{i}^{i} = \{\overline{G} : G \in \mathcal{P}_{\sigma_{\bullet}} \text{ and } G \sim F_{j}\}$
- (b) $Z_j^i(G) = \lim_{t \to \infty} Z_t(G)/Z_t(F_j)$.
- (c) $\overline{\sigma}_j^i \in \operatorname{Stab}(\mathcal{C}_{\prec F_i}^{E_i}/\mathcal{C}_{\prec F_i}^{E_i})/\mathbb{C}$ is independent of choices.
- 4. Given a nice \mathcal{C} and $\mathcal{C} = \langle \mathcal{C}_1, \dots, \mathcal{C}_n \rangle$, with $(\tau_i)_{i=1}^n \prod_{i=1}^n \operatorname{Stab}(\mathcal{C}_i) / \mathbb{C}$, \exists q.c. σ_{\bullet} in $\operatorname{Stab}(\mathcal{C})$ recovering $(\langle \mathcal{C}_1, \dots, \mathcal{C}_n \rangle, (\tau_i)_{i=1}^n)$ using 1 3.

The case of $\mathrm{Coh}(\mathbb{P}^1)$ [5, 6]

Further directions

- 1. (Forthcoming w. D. Halpern-Leistner) construction of a partial compactification of $\operatorname{Stab}(\mathcal{C})/\mathbb{C}$ in which q.c. \Rightarrow convergent
- 2. Investigate more examples (beyond projective curves) and paths coming from quantum differential equations on $H^*_{alg}(X;\mathbb{C})$.

References

- [1] Arend Bayer.
 - A short proof of the deformation property of bridgeland stability conditions, 2019.
- [2] Tom Bridgeland.
 - Stability conditions on triangulated categories, 2007.
- [3] Daniel Halpern-Leistner.

 The noncommutative mini
- The noncommutative minimal model program, 2023.
- [4] Maxim Kontsevich and Yan Soibelman.
 - Stability structures, motivic donaldson-thomas invariants and cluster transformations, 2008.
- [5] Daniel Halpern Leistner, Jeffrey Jiang, and Antonios-Alexandros Robotis. Stability conditions and semiorthogonal decompositions i: Quasi-convergence, 2023.
- [6] So Okada. Stability manifold of \mathbb{P}^1 , 2006.