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Quick review

1 D = Db
coh(X) for X a complex projective manifold

2 Stab(D) = Stab(X) – space of stability conditions (Z,P) on Db
coh(X)

central charge: Z → Hom(K0(X), C) which factors through
ch : K0(X) ↑ H↓

alg(X).

P = {P(φ)}φ→R is a slicing, a categorical structure which refines the
notion of bounded t-structure

P(φ) category of semistable objects of phase φ → R, and

Z(E) → R>0 · exp(iπφ)

(Bridgeland) Stab(X) ↑ Hom(H↓
alg(X), C) given by (Z,P) ↔↑ Z is a

local homeo. Stab(X) is a C-manifold modeled on H↓
alg(X; C)↗.

Natural C-action on Stab(X): w · (Z,P) = (ew · Z,Pw).
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Motivation from NMMP

In arXiv:2301.13168, Halpern-Leistner proposes noncommutative
minimal model program (NMMP)

Heuristic (Optimistic)
Given ε0 = (Z0,P0) → Stab(X), solving “canonical ODEs” in
H↓

alg(X; C)↗ with initial point Z0 gives paths Zt : [0, ∞) ↑ H↓
alg(X; C)↗

which lift to εt : [0, ∞) ↑ Stab(X).

As t ↑ ∞, εt should give rise to semiorthogonal decompositions of D.
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Quasi-convergent paths

In arXiv:2401.00600, (with D. Halpern-Leistner and J. Jiang) we
introduce quasi-convergent paths σt : [0, ∞) → Stab(D).

Theorem (HL, J, R ’23)
A generic quasi-convergent path σt gives a semiorthogonal decomposition
D = ↑D1, . . . ,Dn↓ plus σi ↔ Stab(Di)/C for i = 1, . . . , n.

1 study growth of φt(E) – if for all t ↗ 0, φt(E) < φt(F), then
Hom(F, E) = 0.

2 D1 is generated by objects with φt growing “slowest” and Dn is
generated by objects with φt growing “fastest.”

3 resulting SOD + stability conditions depends only on
σt : [0, ∞) → Stab(D)/C.
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Quasi-convergent paths cont.

D = ↑D1, . . . ,Dn↓ + σi ↔ Stab(Di)/C for i = 1, . . . , n is called a polarised
semiorthogonal decomposition.

Theorem (HL, J, R ’23)
Let D be smooth and proper (as a dg-category). Every polarised SOD
↑D1, . . . ,Dn|σ1, . . . , σn↓ comes from a qc path.

The proof uses the gluing construction of Collins - Polishchuk.

Heuristic
Qc. paths should converge in a (partial) compactification of
Stab(D)/C to boundary points which correspond to polarised SODs
(+ some additional data!)
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The case of P1

The case of P1 gives a good overview of general phenomena:
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Coordinates on the stability manifold

1 Given σ ↔ Stab(X), choose σ-stable E1, . . . , En in Db
coh(X) such that

{ch(Ei)}n
i=1 is basis of H↘

alg(X; C).
2 Bridgeland’s Theorem ≃ ε ⇐→ (Zε(E1), . . . , Zε(En)) ↔ (C↘)n is a

coordinate system around σ.
3 Put logZε(Ei) := log|Zε(Ei)|+ iϱφε(Ei).

ε ⇐→ (logZε(E1), . . . , logZε(En)) ↔ Cn

logarithmic coordinates
4 ⇒ w ↔ C, logZw·ε(Ei) = logZε(Ei) + w so

(logZε(E1), . . . , logZε(En)) ⇐→ (logZε(E1) + w, . . . , logZε(En) + w)

5 Conclusion: Stab(D)/C is locally modeled on Cn/C.
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Summary

1 Want to (partially) compactify Stab(D)/C with points
corresponding to polarised SODs obtained as limits of
“quasi-convergent” paths

2 The local model of Stab(D)/C is Cn/C so we consider first the
problem of compactifying there
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Multiscale lines

Cn/C ↘≃ {(P1, ∞, dz, p1, . . . , pn) | pi ⇐= ∞ ⇒ i}/⇑=
Proof:

µ → Aut(P1): ∞ ↔↑ ∞ ≃ µ(z) = az + b

µ↓(dz) = dz ≃ a = 1

We compactify Cn/C by introducing a “new” moduli space of marked
genus 0 curves, called multiscale lines (inspired by Bainbridge - Chen -
Gendron - Grushevsky - Möller).

Note: dz on P1 is characterised up to a scalar as a meromorphic
differential with an order 2 pole at ∞; i.e, dz → Γ(ΩP1(2∞)) = C.
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Multiscale lines

Definition (Part I)
An n-marked multiscale line is (Σ, p∞,⇑, ω•, p1, . . . , pn) where

1 Σ is a nodal genus 0 curve over C

2 p∞ is a special “top” point on the curve

3 ⇑ is a level structure

4 p1, . . . , pn are marked points which may
collide with each other but not with p∞

+ conditions: e.g. p1, . . . , pn are all on components furthest from p∞
and all such components are at the same “level” ...
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+ conditions: e.g. p1, . . . , pn are all on components furthest from p∞
and all such components are at the same “level” ...
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Multiscale lines

Definition (Part II)
... and ϱ• = {ϱv}v→V(Σ) ↭ meromorphic 1-forms, one per component
Σv, with unique order 2 pole at the node connecting Σv to the root
(resp. at p∞ if v = root)

When Σ = P1, a multiscale line is just (P1, ∞, ϱ = λdz, p1, . . . , pn) for
λ → C↓ ↭ {irred. n ⇓ marked multiscale lines}/⇑ = Cn/C.

For each v → V(Σ), ϱv on Σv ⇔↑ λv → C↓.
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Equivalence

Definition
A C-projective (resp. R-oriented) iso. of multiscale lines f : Σ → Σ⇓ is
an iso. of curves that preserves level structures and marked points s.t.

f ↘(ω⇓
v) = cvωv for cv ↔ C↘ (resp. R>0)

and cv = cw if v ⇔ w and cv = 1 for v a bottom comp. of Σ.
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Examples

Heuristic
A multiscale line Σ up to real-oriented isomorphism gives its dual tree
the structure of a level graph with angles between edges
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Moduli spaces

1 An := {C ↖ proj. iso. classes of n-marked multiscale lines}
2 Cn/C = A

↙
n ∝ An is the set of irreducible multiscale lines

3 Coordinates on An are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)
An is a compact complex algebraic manifold containing Cn/C as an open
dense subset. The boundary D := An \A↙

n is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of An along D, denoted A

R
n .

A
R
n will be the local model for partial compactification of Stab(D)/C.

Alekos Robotis Augmented stability conditions March 6, 2025. 15 / 28



Moduli spaces

1 An := {C ↖ proj. iso. classes of n-marked multiscale lines}
2 Cn/C = A

↙
n ∝ An is the set of irreducible multiscale lines

3 Coordinates on An are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)
An is a compact complex algebraic manifold containing Cn/C as an open
dense subset. The boundary D := An \A↙

n is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of An along D, denoted A

R
n .

A
R
n will be the local model for partial compactification of Stab(D)/C.

Alekos Robotis Augmented stability conditions March 6, 2025. 15 / 28



Moduli spaces

1 An := {C ↖ proj. iso. classes of n-marked multiscale lines}
2 Cn/C = A

↙
n ∝ An is the set of irreducible multiscale lines

3 Coordinates on An are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)
An is a compact complex algebraic manifold containing Cn/C as an open
dense subset. The boundary D := An \A↙

n is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of An along D, denoted A

R
n .

A
R
n will be the local model for partial compactification of Stab(D)/C.

Alekos Robotis Augmented stability conditions March 6, 2025. 15 / 28



Moduli spaces

1 An := {C ↖ proj. iso. classes of n-marked multiscale lines}
2 Cn/C = A

↙
n ∝ An is the set of irreducible multiscale lines

3 Coordinates on An are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)
An is a compact complex algebraic manifold containing Cn/C as an open
dense subset. The boundary D := An \A↙

n is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of An along D, denoted A

R
n .

A
R
n will be the local model for partial compactification of Stab(D)/C.

Alekos Robotis Augmented stability conditions March 6, 2025. 15 / 28



Moduli spaces

1 An := {C ↖ proj. iso. classes of n-marked multiscale lines}
2 Cn/C = A

↙
n ∝ An is the set of irreducible multiscale lines

3 Coordinates on An are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)
An is a compact complex algebraic manifold containing Cn/C as an open
dense subset. The boundary D := An \A↙

n is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of An along D, denoted A

R
n .

A
R
n will be the local model for partial compactification of Stab(D)/C.

Alekos Robotis Augmented stability conditions March 6, 2025. 15 / 28



Moduli spaces

1 An := {C ↖ proj. iso. classes of n-marked multiscale lines}
2 Cn/C = A

↙
n ∝ An is the set of irreducible multiscale lines

3 Coordinates on An are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)
An is a compact complex algebraic manifold containing Cn/C as an open
dense subset. The boundary D := An \A↙

n is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of An along D, denoted A

R
n .

A
R
n will be the local model for partial compactification of Stab(D)/C.

Alekos Robotis Augmented stability conditions March 6, 2025. 15 / 28



A2 and A
R
2

Alekos Robotis Augmented stability conditions March 6, 2025. 16 / 28

amendootightoggo
so



A2 and A
R
2

Alekos Robotis Augmented stability conditions March 6, 2025. 16 / 28

apparent
state

n

So



Multiscale decompositions

Definition (Multiscale decomposition)
A multiscale decomposition D = ↑D•↓Σ is:

1 an un-marked multiscale line (Σ, p∞,⇑, ω•) and
2 thick triangulated subcategories D′v for each bottom v ↔ V(Σ)

such that D′v and D′w satisfy relations encoded by p(v, w) ↔ S1.

Heuristic
A multiscale decomposition is a categorical structure interpolating
between a filtration and a semiorthogonal decomposition of D.
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When Σ ⇔= P1, a multiscale decomp. is trivial, just D = ↑D↓P1 . Next, let

Γ(Σ) =

Consider the following configurations of nodes on Σroot \ p∞ = C :

∞p(vi, vj) > 0 ≃ Hom(D′vj ,D′vi) = 0; get sod D = ↑D′v1 , . . . ,D′v6↓.

p(vi, vj) = 1 ≃ D′vi ⊋ D′vj ; get filt. 0 ⊋ D′v1 ⊋ · · · ⊋ D′v6 = D.

Alekos Robotis Augmented stability conditions March 6, 2025. 19 / 28

flirds
slots

of m

oggit
monsoons

appampionsff
mm

mommossos



When Σ ⇔= P1, a multiscale decomp. is trivial, just D = ↑D↓P1 . Next, let

Γ(Σ) =

Consider the following configurations of nodes on Σroot \ p∞ = C :

∞p(vi, vj) > 0 ≃ Hom(D′vj ,D′vi) = 0; get sod D = ↑D′v1 , . . . ,D′v6↓.

p(vi, vj) = 1 ≃ D′vi ⊋ D′vj ; get filt. 0 ⊋ D′v1 ⊋ · · · ⊋ D′v6 = D.

Alekos Robotis Augmented stability conditions March 6, 2025. 19 / 28

Iggn

ns
oaeeoss

n n pfgd mm

opposes



When Σ ⇔= P1, a multiscale decomp. is trivial, just D = ↑D↓P1 . Next, let

Γ(Σ) =

Consider the following configurations of nodes on Σroot \ p∞ = C :

∞p(vi, vj) > 0 ≃ Hom(D′vj ,D′vi) = 0; get sod D = ↑D′v1 , . . . ,D′v6↓.

p(vi, vj) = 1 ≃ D′vi ⊋ D′vj ; get filt. 0 ⊋ D′v1 ⊋ · · · ⊋ D′v6 = D.

Alekos Robotis Augmented stability conditions March 6, 2025. 19 / 28

It

on
on

on
no

n
n

mm.org.eg
BIflf
otaku



When Σ ⇔= P1, a multiscale decomp. is trivial, just D = ↑D↓P1 . Next, let

Γ(Σ) =

Consider the following configurations of nodes on Σroot \ p∞ = C :

∞p(vi, vj) > 0 ≃ Hom(D′vj ,D′vi) = 0; get sod D = ↑D′v1 , . . . ,D′v6↓.

p(vi, vj) = 1 ≃ D′vi ⊋ D′vj ; get filt. 0 ⊋ D′v1 ⊋ · · · ⊋ D′v6 = D.

Alekos Robotis Augmented stability conditions March 6, 2025. 19 / 28

I

on
on

on
no

n
n

mm

n 8s 96

mm



Next, consider the following configuration:

We get a filtered SOD,

D = ↑D′v1 ⊋ D′v2 ,D′v3 ,D′v4 ,D′v5 ⊋ D′v6↓.

Each D′v has associated graded category grv(D•) obtained by quotient-
ing by categories “to the left”

grv4
(D•) = D′v4 , grv5

(D•) = D′v5

grv6
(D′v6) = D′v6 /D′v5 , etc.

Alekos Robotis Augmented stability conditions March 6, 2025. 20 / 28

9 in

ng
n

q 2
mar

E

F



Next, consider the following configuration:

We get a filtered SOD,

D = ↑D′v1 ⊋ D′v2 ,D′v3 ,D′v4 ,D′v5 ⊋ D′v6↓.

Each D′v has associated graded category grv(D•) obtained by quotient-
ing by categories “to the left”

grv4
(D•) = D′v4 , grv5

(D•) = D′v5

grv6
(D′v6) = D′v6 /D′v5 , etc.

Alekos Robotis Augmented stability conditions March 6, 2025. 20 / 28

if

ng
n

q on
man



Next, consider the following configuration:

We get a filtered SOD,

D = ↑D′v1 ⊋ D′v2 ,D′v3 ,D′v4 ,D′v5 ⊋ D′v6↓.

Each D′v has associated graded category grv(D•) obtained by quotient-
ing by categories “to the left”

grv4
(D•) = D′v4 , grv5

(D•) = D′v5

grv6
(D′v6) = D′v6 /D′v5 , etc.

Alekos Robotis Augmented stability conditions March 6, 2025. 20 / 28

if

ng
n

q on
man

a



Next, consider the following configuration:

We get a filtered SOD,

D = ↑D′v1 ⊋ D′v2 ,D′v3 ,D′v4 ,D′v5 ⊋ D′v6↓.

Each D′v has associated graded category grv(D•) obtained by quotient-
ing by categories “to the left”

grv4
(D•) = D′v4 , grv5

(D•) = D′v5

grv6
(D′v6) = D′v6 /D′v5 , etc.

Alekos Robotis Augmented stability conditions March 6, 2025. 20 / 28

if

ng
n

q 9
mar

so



Next, consider the following configuration:

We get a filtered SOD,

D = ↑D′v1 ⊋ D′v2 ,D′v3 ,D′v4 ,D′v5 ⊋ D′v6↓.

Each D′v has associated graded category grv(D•) obtained by quotient-
ing by categories “to the left”

grv4
(D•) = D′v4 , grv5

(D•) = D′v5

grv6
(D′v6) = D′v6 /D′v5 , etc.

Alekos Robotis Augmented stability conditions March 6, 2025. 20 / 28

9 if

ng
n

q on
man



Augmented stability conditions

Definition (Augmented stability condition)
An augmented stability condition σ = ↑D•|σ•↓Σ is a multiscale
decomposition D = ↑D•↓Σ such that grv(D•) is equipped with
σv ↔ Stab(grv(D•))/C for each v ↔ V(Σ)bot.

Here is a generic – ⇒v, w, p(v, w) ∈↔ R – example when Γ(Σ) =

Stab(D)/C is identified with the set of points in A Stab(D) of the form

↑D | σ ↔ Stab(D)/C↓P1 .
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Main Theorem

A Stab(D) := set of augmented stability conditions.

Theorem (Halpern-Leistner, R.)
There is a Hausdorff topology on A Stab(D) such that

1 Stab(D)/C is an open subspace;

2 around any generic “admissible” boundary point σ ↔ A Stab(D), ∋
open U homeomorphic to an open nbhd of a boundary point in A

R
n ;

3 generic quasi-convergent paths (with a few mild hypotheses) converge to
their corresponding polarised SODs; and

4 Aut(D)-action on Stab(D)/C extends continuously to A Stab(D).
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Manifold with corners property

1 Take σ = ↑D•|σ•↓Σ with Σ generic. For simplicity, let Γ(Σ) =

2 D = ↑D′v1 , . . . ,D′vk↓ ↭ H↘(D) =
⊕k

i=1 H↘(D′vi).

3 ⇒ i = 1, . . . , k choose σvi-stable objects E(i)
• △ Ob(D′vi) such that

E(i)
• is basis of H↘(D′vi)Q.

4 ∋ U ▽ σ on which E(i)
• are all stable and the map logZE•

: U → A
R
n

is a local homeo.
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P1 revisited

Here is the (partial) compactification in the case of P1.

Question: what is the limiting point of γt as t → ∞?
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Path along the boundary

We consider a path along the boundary from σ∞ to η∞, which passes
through γ∞.

The boundary point limt→∞ γt is a degenerate semiorthogonal
decomposition, i.e. an admissible filtration 0 ⊋ ↑O↓ ⊋ Db

coh(P
1).
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1 In P1 ex., moving along boundary mutates the SOD. This is a
general feature.

2 Pirozhkov ’20 classifies SODs of Db
coh(P

2): coarsenings of
mutations of ↑O,O(1),O(2)↓.

3 A Stab(P2)Γ is the stratum such that Γ(Σ) =
4 The map

is a conn. cover
5 SΓ ̸ Conf3(C) and A Stab(P2)Γ → SΓ is univ. cover
6 Given γ ↔ ϱ1(SΓ) ←→ b ↔ B3,

γ · ↑O,O(1),O(2)↓Σ = ↑E1, E2, E3↓Σ

where E1, E2, E3 is obtained by mutation along b.
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Perspective

Proposition (Informal)
Connected components of strata in ∂A Stab correspond to equivalence classes
of SODs up to mutation.

This gives us a revised:

Heuristic
Given σ0, ε0 ↔ Stab(X)/C and corresponding paths σt and εt, one
hopes σt and εt converge to points in the same connected component
of ∂A Stab(X), giving a canonical mutation class of SOD for Db

coh(X).
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Thank you!

Thank you for listening!
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