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o central charge: Z € Hom(Ky(X), C) which factors through
ch: Ko(X) — H:lg(X).
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notion of bounded t-structure
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Quick review

@ D =DP (X) for X a complex projective manifold

coh
@ Stab(D) = Stab(X) - space of stability conditions (Z, P) on D?  (X)

o central charge: Z € Hom(Ky(X), C) which factors through
ch: Ko(X) — H:lg(X).

o P = {P(¢)}ycr is aslicing, a categorical structure which refines the
notion of bounded t-structure

o P(¢) category of semistable objects of phase ¢ € R, and

Z(E) € Ruq - exp(intg)

o (Bridgeland) Stab(X) — Hom(H;:lg(X), C) given by (Z,P) — Zisa

local homeo. Stab(X) is a C-manifold modeled on H;‘lg(X,‘ C)V.

o Natural C-action on Stab(X): w- (Z,P) = (¥ - Z, P¥).
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Motivation from NMMP

In arXiv:2301.13168, Halpern-Leistner proposes noncommutative
minimal model program (NMMP)

Heuristic (Optimistic)

Given 0y = (Zo, Pp) € Stab(X), solving “canonical ODEs” in
H3,,(X; €)Y with initial point Zo gives paths Z; : [0, 00) — H},
which lift to 0} : [0, 00) — Stab(X).

(X;C)Y
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Motivation from NMMP

In arXiv:2301.13168, Halpern-Leistner proposes noncommutative
minimal model program (NMMP)

Heuristic (Optimistic)

Given 0y = (Zo, Pp) € Stab(X), solving “canonical ODEs” in
H3,,(X; €)Y with initial point Zo gives paths Z; : [0, 00) — H},
which lift to 0} : [0, 00) — Stab(X).

(X;C)Y

Ast — o0, 0; should give rise to semiorthogonal decompositions of D.

y
r/ﬁ/
\ \_\aad(x 62)

Stab(X)
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Quasi-convergent paths

In arXiv:2401.00600, (with D. Halpern-Leistner and J. Jiang) we
introduce quasi-convergent paths oy : [0,00) — Stab(D).
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introduce quasi-convergent paths oy : [0,00) — Stab(D).

Theorem (HL, J, R "23)

A generic quasi-convergent path o; gives a semiorthogonal decomposition
D = (Dyq,...,Dy) plus 0; € Stab(D;)/Cfori=1,...,n.

@ study growth of ¢;(E) —if forall t > 0, ¢:(E) < ¢+(F), then
Hom(F,E) = 0.
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A generic quasi-convergent path o; gives a semiorthogonal decomposition
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@ study growth of ¢;(E) —if forall t > 0, ¢:(E) < ¢+(F), then
Hom(F,E) = 0.

@ D, is generated by objects with ¢; growing “slowest” and D,, is
generated by objects with ¢; growing “fastest.”
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Quasi-convergent paths

In arXiv:2401.00600, (with D. Halpern-Leistner and J. Jiang) we
introduce quasi-convergent paths oy : [0,00) — Stab(D).

Theorem (HL, J, R "23)

A generic quasi-convergent path o; gives a semiorthogonal decomposition
D = (Dyq,...,Dy) plus 0; € Stab(D;)/Cfori=1,...,n.

@ study growth of ¢;(E) —if forall t > 0, ¢:(E) < ¢+(F), then
Hom(F,E) = 0.

@ D, is generated by objects with ¢; growing “slowest” and D,, is
generated by objects with ¢; growing “fastest.”

@ resulting SOD + stability conditions depends only on
0t : |0,00) — Stab(D)/C.
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Quasi-convergent paths cont.

D=(Dq,...,Dy) +0; € Stab(D;)/Cfori=1,...,nis called a polarised
semiorthogonal decomposition.
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Quasi-convergent paths cont.

D=(Dq,...,Dy) +0; € Stab(D;)/Cfori=1,...,nis called a polarised
semiorthogonal decomposition.

Theorem (HL, J, R "23)

Let D be smooth and proper (as a dg-category). Every polarised SOD
(D1,...,Dyloy, ..., 00) comes from a gc path.

The proof uses the gluing construction of Collins - Polishchuk.
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Quasi-convergent paths cont.

D=(Dq,...,Dy) +0; € Stab(D;)/Cfori=1,...,nis called a polarised
semiorthogonal decomposition.

Theorem (HL, J, R "23)

Let D be smooth and proper (as a dg-category). Every polarised SOD
(D1,...,Dyloy, ..., 00) comes from a gc path.

The proof uses the gluing construction of Collins - Polishchuk.

Heuristic

Qc. paths should converge in a (partial) compactification of
Stab(D)/C to boundary points which correspond to polarised SODs
(+ some additional data!)
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The case of P!

The case of P! gives a good overview of general phenomena:
Stab(P')/e = € (Okada)

:R‘c:tu ve * M[m ~ Roister.

. o%
7 (0, 0ty
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Coordinates on the stability manifold

@ Given o € Stab(X), choose o-stable Eq, ..., E, in DEOh(X) such that

{ch(E;)}!, is basis of H;‘lg(X; C).
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Coordinates on the stability manifold

© Given o € Stab(X), choose o-stable E1, .

{ch(E;)}!, is basis of H;‘lg(X; C).

@ Bridgeland’s Theorem = 7 +— (Z:(E1), ..

coordinate system around o.
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Coordinates on the stability manifold

@ Given o € Stab(X), choose o-stable Eq, ..., E, in DEOh(X) such that

{ch(E;)}!, is basis of H;‘lg(X; C).

@ Bridgeland’s Theorem = 7 — (Z:(E1),...,Z+(E;)) € (C*)"isa
coordinate system around o.

@ PutlogZ _(E;) :=log|Z.(E;)| + irt¢-(E;).
T — (logZ_(E1),...,logZ_(E,)) € C"

logarithmic coordinates
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Coordinates on the stability manifold

@ Given o € Stab(X), choose o-stable Eq, ..., E, in DEOh(X) such that

{ch(E;)}!, is basis of H;‘lg(X; C).

@ Bridgeland’s Theorem = 7 — (Z:(E1),...,Z+(E;)) € (C*)"isa
coordinate system around o.

@ PutlogZ _(E;) :=log|Z.(E;)| + irt¢-(E;).
T — (logZ_(E1),...,logZ_(E,)) € C"

logarithmic coordinates
Q@ Vwe ClogZ, (E;) =logZ (E;) +wso

(logZ_(Eq),...,logZ_(E,)) — (logZ_(E1) +w,...,logZ _(E,) + w)
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Coordinates on the stability manifold

@ Given o € Stab(X), choose o-stable Eq, ..., E, in DEOh(X) such that

{ch(E;)}!, is basis of H;‘lg(X; C).

@ Bridgeland’s Theorem = 7 — (Z:(E1),...,Z+(E;)) € (C*)"isa
coordinate system around o.

@ PutlogZ _(E;) :=log|Z.(E;)| + irt¢-(E;).
T — (logZ_(E1),...,logZ_(E,)) € C"

logarithmic coordinates
Q@ Vwe ClogZ, (E;) =logZ (E;) +wso

(logZ_(Eq),...,logZ_(E,)) — (logZ_(E1) +w,...,logZ _(E,) + w)

@ Conclusion: Stab(D)/C is locally modeled on C"*/C.
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@ Want to (partially) compactify Stab(D)/C with points
corresponding to polarised SODs obtained as limits of
“quasi-convergent” paths

Alekos Robotis Augmented stability conditions March 6, 2025.



@ Want to (partially) compactify Stab(D)/C with points
corresponding to polarised SODs obtained as limits of
“quasi-convergent” paths

@ The local model of Stab(D)/C is C"/C so we consider first the
problem of compactifying there
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Multiscale lines

C"/C <= {(P',c0,dz,p1,...,pu) | pi # 0V i}/=
Proof-
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Multiscale lines

C"/C < {(P,00,dz,p1,...,pn) | pi # 0 Vi}/=

Proof-
@ uc Aut(Pl): oo+ 00 = u(z) =az+b
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Multiscale lines

C"/C < {(P,00,dz,p1,...,pn) | pi # 0 Vi}/=

Proof-
@ uc Aut(Pl): oo+ 00 = u(z) =az+b

@ u*(dz) =dz=a=1
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Multiscale lines

C"/C < {(P!,00,dz,p1,...,0n) |pi # 0Vi}/=
Proof-
@ uc Aut(Pl): oo+ 00 = u(z) =az+b
@ u*(dz) =dz=a=1
We compactify C"/C by introducing a “new” moduli space of marked

genus 0 curves, called multiscale lines (inspired by Bainbridge - Chen -
Gendron - Grushevsky - Moller).
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Multiscale lines

C"/C < {(P!,00,dz,p1,...,0n) |pi # 0Vi}/=
Proof-
@ uc Aut(Pl): oo+ 00 = u(z) =az+b
@ u*(dz) =dz=a=1
We compactify C"/C by introducing a “new” moduli space of marked

genus 0 curves, called multiscale lines (inspired by Bainbridge - Chen -
Gendron - Grushevsky - Moller).

Note: dz on P! is characterised up to a scalar as a meromorphic
differential with an order 2 pole at o0; i.e, dz € I'(Qp1(200)) = C.
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Multiscale lines
Definition (Part I)

An n-marked multiscale line is (X, poo, =, We, V1, - - -, Pn) Where
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Multiscale lines
Definition (Part I)

An n-marked multiscale line is (X, poo, =, We, V1, - - -, Pn) Where

Q@ X isanodal genus 0 curve over C

@ 7y is a special “top” point on the curve
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An n-marked multiscale line is (X, poo, =, We, V1, - - -, Pn) Where

Q@ X isanodal genus 0 curve over C
@ 7y is a special “top” point on the curve

@ < isalevel structure
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Multiscale lines
Definition (Part I)

An n-marked multiscale line is (X, poo, =, We, V1, - - -, Pn) Where

Q@ X isanodal genus 0 curve over C
@ 7y is a special “top” point on the curve
© =isalevel structure

© pi,...,p, are marked points which may
collide with each other but not with p,
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Multiscale lines

Definition (Part I)

An n-marked multiscale line is (X, poo, =, We, V1, - - -, Pn) Where

© X is anodal genus 0 curve over C
@ 7y is a special “top” point on the curve

© = isalevel structure

Q pi1,...,pn are marked points which may P R
collide with each other but not with p,

+ conditions: e.g. p1, ..., p, are all on components furthest from po,
and all such components are at the same “level” ...
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Multiscale lines

Definition (Part II)

.. and we = {Wy fyey(x) ~» meromorphic 1-forms, one per component
2.y, with unique order 2 pole at the node connecting ., to the root
(resp. at p if v = root)
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Multiscale lines

Definition (Part II)

.. and we = {Wy fyey(x) ~» meromorphic 1-forms, one per component
2.y, with unique order 2 pole at the node connecting ., to the root
(resp. at p if v = root)

When X~ = P!, a multiscale line is just (P!, 00, w = Adz,p1,...,p,) for
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(resp. at p if v = root)
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Multiscale lines

Definition (Part II)

.. and we = {Wy fyey(x) ~» meromorphic 1-forms, one per component
2.y, with unique order 2 pole at the node connecting ., to the root
(resp. at p if v = root)

When X~ = P!, a multiscale line is just (P!, 00, w = Adz,p1,...,p,) for
A € C* ~~ {irred. n — marked multiscale lines} /~ = C"/C.

Foreachv € V(Z), w,on L, +— A, € C*,

oQ

Ao
X / AN e va
! Ao
/A / \

X3 Ay \s N
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A C-projective (resp. R-oriented) iso. of multiscale lines f : £ — X' is
an iso. of curves that preserves level structures and marked points s.t.
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A C-projective (resp. R-oriented) iso. of multiscale lines f : £ — X' is
an iso. of curves that preserves level structures and marked points s.t.

f*(w;,) = cpwy forc, € C* (resp. Rwg)

Alekos Robotis Augmented stability conditions March 6, 2025.



Definition

A C-projective (resp. R-oriented) iso. of multiscale lines f : £ — X' is
an iso. of curves that preserves level structures and marked points s.t.

f*(w;,) = cpwy forc, € C* (resp. Rwg)

and ¢, = ¢y if v ~ w and ¢, = 1 for v a bottom comp. of X.

up to ’iSornorPLu;SWL up Yo C"P"E{Uh‘“ wso. | up o R”ov\\w\i’ﬁ& SO .
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Definition

A C-projective (resp. R-oriented) iso. of multiscale lines f : £ — X' is
an iso. of curves that preserves level structures and marked points s.t.

f*(w;,) = cpwy forc, € C* (resp. Rwg)

and ¢, = ¢y if v ~ w and ¢, = 1 for v a bottom comp. of X.

up to ’iSornorPLu;SWL up Yo C"P"E{Uh‘“ wso. | up o R”ov\\w\i’ﬁ& SO .
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Definition

A C-projective (resp. R-oriented) iso. of multiscale lines f : £ — X' is
an iso. of curves that preserves level structures and marked points s.t.

f*(w;,) = cpwy forc, € C* (resp. Rwg)

and ¢, = ¢y if v ~ w and ¢, = 1 for v a bottom comp. of X.

up to ’iSornorPLu;SWL up Yo C"P"E{Uh‘“ wso. | up o R”ov\\w\i’ﬁ& SO .
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Definition

A C-projective (resp. R-oriented) iso. of multiscale lines f : £ — X' is
an iso. of curves that preserves level structures and marked points s.t.

and ¢, = ¢y if v ~ w and ¢, = 1 for v a bottom comp. of X.

f*(w;,) = cpwy forc, € C* (resp. Rwg)

up to isomorf)lusm

up to C’Pﬂﬁﬁ‘“ SO

up ‘o R*ov\\ey\twﬂ ¢SO .
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Definition

A C-projective (resp. R-oriented) iso. of multiscale lines f : £ — X' is
an iso. of curves that preserves level structures and marked points s.t.

and ¢, = ¢y if v ~ w and ¢, = 1 for v a bottom comp. of X.

f*(w;,) = cpwy forc, € C* (resp. Rwg)

up to isomorf)lusm

up to C’Pﬂﬁﬁ‘“ SO

up ‘o R*ov\\ey\twﬂ ¢SO .
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A multiscale line 2 up to real-oriented isomorphism gives its dual tree
the structure of a level graph with angles between edges
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Moduli spaces

Q@ A, :={C — proj. iso. classes of n-marked multiscale lines}
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Moduli spaces

Q@ A, :={C — proj. iso. classes of n-marked multiscale lines}
Q@ C'"/C=A; C A, is the set of irreducible multiscale lines
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Moduli spaces

Q@ A, :={C — proj. iso. classes of n-marked multiscale lines}
Q@ C'"/C=A; C A, is the set of irreducible multiscale lines

@ Coordinates on A, are constructed using the integral functions
from the last slide.
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Moduli spaces

Q@ A, :={C — proj. iso. classes of n-marked multiscale lines}
Q@ C'"/C=A; C A, is the set of irreducible multiscale lines

@ Coordinates on A, are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)

Ay 15 a compact complex algebraic manifold containing C" /C as an open
dense subset. The boundary D := A, \ A, is snc.
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Moduli spaces

Q@ A, :={C — proj. iso. classes of n-marked multiscale lines}
Q@ C'"/C=A; C A, is the set of irreducible multiscale lines

@ Coordinates on A, are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)

Ay 15 a compact complex algebraic manifold containing C" /C as an open
dense subset. The boundary D := A, \ A, is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of A, along D, denoted A},
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Moduli spaces

Q@ A, :={C — proj. iso. classes of n-marked multiscale lines}
Q@ C'"/C=A; C A, is the set of irreducible multiscale lines

@ Coordinates on A, are constructed using the integral functions
from the last slide.

Theorem (Halpern-Leistner, R.)

Ay 15 a compact complex algebraic manifold containing C" /C as an open
dense subset. The boundary D := A, \ A, is snc.

The set of R-oriented iso. classes of n-marked multiscale lines is in canonical
bijection with the real oriented blowup of A, along D, denoted A},

AR will be the local model for partial compactification of Stab(D)/C.
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JA:R _ Coordinete 9’: 33@‘ A2
Loy b = I\lwmt e s
7]
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Multiscale decompositions

Definition (Multiscale decomposition)

A multiscale decomposition D = (D, )y is:
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Multiscale decompositions

Definition (Multiscale decomposition)

A multiscale decomposition D = (D, )y is:

@ an un-marked multiscale line (X, pe, =, we ) and
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Multiscale decompositions

Definition (Multiscale decomposition)

A multiscale decomposition D = (D, )y is:
@ an un-marked multiscale line (X, pe, =, we ) and
@ thick triangulated subcategories D, for each bottom v € V(%)
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Multiscale decompositions

Definition (Multiscale decomposition)

A multiscale decomposition D = (D, )y is:
@ an un-marked multiscale line (X, pe, =, we ) and
@ thick triangulated subcategories D, for each bottom v € V(%)

such that D, and D, satisfy relations encoded by p(v,w) € S'.
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Multiscale decompositions

Definition (Multiscale decomposition)

A multiscale decomposition D = (D)5 is:

@ an un-marked multiscale line (X, pe, =, we ) and

@ thick triangulated subcategories D, for each bottom v € V(%)
such that D, and D, satisfy relations encoded by p(v,w) € S'.

A multiscale decomposition is a categorical structure interpolating
between a filtration and a semiorthogonal decomposition of D.
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When ¥ = P!, a multiscale decomp. is trivial, just D = (D)p:.
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When ¥ = P!, a multiscale decomp. is trivial, just D = (D)pi1. Next, let

= N\

Vi vy Vi

Consider the following configurations of nodes on oot \ poo = C:
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When ¥ = P!, a multiscale decomp. is trivial, just D = (D)pi1. Next, let
- N\
Vi Vv Vg

Consider the following configurations of nodes on oot \ poo = C:

.Y\B

.n;{

®q

2=

on,

Sp(vi,v7) > 0 = Hom(D<y, D<y;) = 0; getsod D = (D<yy, ..., D<)
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When ¥ = P!, a multiscale decomp. is trivial, just D = (D)pi1. Next, let
- N\
Vi Vv Vg

Consider the following configurations of nodes on oot \ poo = C:

.Y\B

.n;{

®q

2=

on,

Sp(vi,v7) > 0 = Hom(D<y, D<y;) = 0; getsod D = (D<yy, ..., D<)

]J(Ui, U]) =1= ngi C I)Svj,' get filt. 0 g Dﬁvl g_ <. g DS% = D.

—
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Next, consider the following configuration:
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Next, consider the following configuration:

We get a filtered SOD,

D= <D§vl - stzrﬂﬁvsrﬂﬁvyﬂé% - D§U6>‘

—
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Next, consider the following configuration:

We get a filtered SOD,
D= <D§vl Q stzr@§03/D§v4rD§v5 g D§v6>-

Each D, has associated graded category gr (D, ) obtained by quotient-
ing by categories “to the left”
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Next, consider the following configuration:

We get a filtered SOD,
D= <D§vl Q stzr@§03/D§v4r®§v5 g D§v6>-

Each D, has associated graded category gr (D, ) obtained by quotient-
ing by categories “to the left”

° grv4(1).) = D<o, grv5(®°) = D<y;
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Next, consider the following configuration:

We get a filtered SOD,
D= <D§vl Q stzr@§03/D§v4r®§v5 g D§v6>-

Each D, has associated graded category gr (D, ) obtained by quotient-
ing by categories “to the left”

° grv4(1).) = D<o, grv5(®°) = D<o,
o gr, (D<o;) = D<o,/ D<o, ete.
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Augmented stability conditions

Definition (Augmented stability condition)

An augmented stability condition o = (D4 |0, )5 is a multiscale
decomposition D = (D, )y such that gr_(D,) is equipped with
0, € Stab(gr,(D.))/C for each v € V(Z)por.
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Augmented stability conditions

Definition (Augmented stability condition)

An augmented stability condition o = (D4 |0, )5 is a multiscale
decomposition D = (D, )y such that gr_(D,) is equipped with
0, € Stab(gr,(D.))/C for each v € V(Z)por.

Here is a generic — Vo, w, p(v,w) € R —example when I'(X) =
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Augmented stability conditions

Definition (Augmented stability condition)

An augmented stability condition o = (D4 |0, )5 is a multiscale
decomposition D = (D, )y such that gr_(D,) is equipped with
0, € Stab(gr,(D.))/C for each v € V(Z)por.

Here is a generic — Vo, w, p(v,w) € R —example when I'(X) =

V| Vo U6

oW

"D=<'Déu\,.--)’])i—\/s>
°uy s + Oce S‘faﬁ('Dev.‘)/C

o 1=15..,6

*n, (\)o\ay(rujl SOD + 23
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Augmented stability conditions

Definition (Augmented stability condition)

An augmented stability condition o = (D4 |0, )5 is a multiscale
decomposition D = (D, )y such that gr_(D,) is equipped with
0, € Stab(gr,(D.))/C for each v € V(Z)por.

Here is a generic — Vo, w, p(v,w) € R —example when I'(X) =

V| Vo U6

oW

"D'=<'Déu\,.--)’])é\/s>
°uy s + Oce S‘faﬁ('Dev.‘)/C

o 1=15..,6

*n, (\)o\ay(rul SOD + 23

[ ]
n,

Stab(D)/C is identified with the set of points in A Stab(D) of the form
<® | - Stab(@)/C>P1.
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A Stab(D) := set of augmented stability conditions.
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A Stab(D) := set of augmented stability conditions.

Theorem (Halpern-Leistner, R.)

There is a Hausdorff topology on A Stab(D) such that
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A Stab(D) := set of augmented stability conditions.

Theorem (Halpern-Leistner, R.)

There is a Hausdorff topology on A Stab(D) such that

© Stab(D)/C is an open subspace;
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A Stab(D) := set of augmented stability conditions.

Theorem (Halpern-Leistner, R.)

There is a Hausdorff topology on A Stab(D) such that

© Stab(D)/C is an open subspace;

@ around any generic “admissible” boundary point o € A Stab(D), 3
open U homeomorphic to an open nbhd of a boundary point in AR;
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A Stab(D) := set of augmented stability conditions.

Theorem (Halpern-Leistner, R.)

There is a Hausdorff topology on A Stab(D) such that

© Stab(D)/C is an open subspace;

@ around any generic “admissible” boundary point o € A Stab(D), 3
open U homeomorphic to an open nbhd of a boundary point in AR;

@ generic quasi-convergent paths (with a few mild hypotheses) converge to
their corresponding polarised SODs; and
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A Stab(D) := set of augmented stability conditions.

Theorem (Halpern-Leistner, R.)

There is a Hausdorff topology on A Stab(D) such that

© Stab(D)/C is an open subspace;

@ around any generic “admissible” boundary point o € A Stab(D), 3
open U homeomorphic to an open nbhd of a boundary point in AR;

@ generic quasi-convergent paths (with a few mild hypotheses) converge to
their corresponding polarised SODs; and

O Aut(D)-action on Stab(D) /C extends continuously to A Stab(D).
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Manifold with corners property

Q Take 0 = (D, |0, )x with £ generic. For simplicity, let T'(X) = /I\
Q
Q
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Manifold with corners property

Q Take 0 = (D, |0, )x with £ generic. For simplicity, let T'(X) = /I\
Q@ D = (Do, Dey) ~ H (D) = Bi_1 H (D<v,).
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Manifold with corners property

@ Take 0 = (D,|0,)x with  generic. For simplicity, let T'(X) = /I\
@ D = (D<y, ..., Dey) ~ H'(D) = @ H (D<y).

@ Vi=1,...,kchoose 0,-stable objects Eﬁi) C Ob(D<y,) such that
E{" is basis of H* (D<v;)0-
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Manifold with corners property

@ Take 0 = (D,|0,)x with  generic. For simplicity, let T'(X) = /I\
@ D = (D<y, ..., Dey) ~ H'(D) = @ H (D<y).

@ Vi=1,...,kchoose 0,-stable objects Eﬁi) C Ob(D<y,) such that
E{" is basis of H* (D<v;)0-

© 3 U > o on which E{” are all stable and the map logZ, : U — A}
is a local homeo.
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P! revisited

Here is the (partial) compactification in the case of P*.
At (B =R (nb. StabKOY) /e =+ )

Ot

(0,01

Nt (O(")) ®>

i
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P! revisited

Here is the (partial) compactification in the case of P*.
At (B =R (nb. StabKOY) /e =+ )

e 50(4))
° - } == LD ©>
(0,01 @.} '(Om

i

Nt (O(")) ®>
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P! revisited

Here is the (partial) compactification in the case of P.

At (®) =R (nb. StabKOY) /e =+ )

{Om)
° > i ¢ G0 T é 9 ©>
Poo
0>
e (0,0 e - ¢
. > s = @ .
(TR 6 {O(-nY
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P! revisited

Here is the (partial) compactification in the case of P*.
At (B =R (nb. StabKOY) /e =+ )

Poo
S [

° s Ot IR ‘ ’ ©>
/ % <® >
Poo
o W ] <o
. > Yoo e .
oY Z0Y coen

Question: what is the limiting point of . ast — c0?
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Path along the boundary

We consider a path along the boundary from o to %, which passes
through

{OM)

N\

7

Ot O
(0,0t J

(01,0

|
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Path along the boundary

We consider a path along the boundary from o to %, which passes
through

{OM)

N\

7

Ot O
(0,0t J

(01,0

|
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Path along the boundary

We consider a path along the boundary from o to %, which passes
through

{OM)

N\

7

(0, 0t} J

(01,0

|

Nt

Y

_{0)

{ 6(4\)
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Path along the boundary

We consider a path along the boundary from o to %, which passes
through

{omy

N\

©)

Ot O
(0,0t J

|

(01,0

_{0)

{ 6(4\)

The boundary point lim;_,« ¢+ is a degenerate semiorthogonal
decomposition, i.e. an admissible filtration 0 C (©) C DP  (P?).

coh
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@ In P! ex,, moving along boundary mutates the SOD. This is a
general feature.
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@ In P! ex,, moving along boundary mutates the SOD. This is a
general feature.

@ Pirozhkov "20 classifies SODs of DP | (P?): coarsenings of
mutations of (O, 0(1),0(2)).

o

o
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@ In P! ex,, moving along boundary mutates the SOD. This is a
general feature.

@ Pirozhkov "20 classifies SODs of DP | (P?): coarsenings of

mutations of (O, 0(1),0(2)). -
@ AStab(P?)r is the stratum such that T'(X) = /1\
e v, V2 W
Q
6
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@ In P! ex,, moving along boundary mutates the SOD. This is a
general feature.

@ Pirozhkov "20 classifies SODs of DP | (P?): coarsenings of

mutations of (O, 0(1),0(2)). -
@ AStab(P?)r is the stratum such that T'(X) = /1\
© The map USRI
Ao (B)r > Sr ey

Poo

E.VE, T2 i
< U J. O'gg& lﬁﬂ@)

%2(F E) 03 2E,)

1S a CONN. cover
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@ In P! ex,, moving along boundary mutates the SOD. This is a
general feature.

@ Pirozhkov "20 classifies SODs of DP | (P?): coarsenings of

mutations of (O, 0(1),0(2)). -
@ AStab(P?)r is the stratum such that T'(X) = /1\
© The map i vz
Ao (8)r > Sr s

Poo

E.VE, T2 i
< U J. O'gg& Iﬁz(Ej)

%2(F E) 0@ 2E,)

1S a conn. cover
@ Sr ~ Conf3(C) and A Stab(P?)r — Sr is univ. cover
o
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@ In P! ex,, moving along boundary mutates the SOD. This is a
general feature.

@ Pirozhkov "20 classifies SODs of DP | (P?): coarsenings of

mutations of (O, 0(1),0(2)). -
@ AStab(P?)r is the stratum such that T'(X) = /1\
© The map i vz
Ao (8)r > Sr s

Puo

E.VE, T2 i
< U J. O'gg& I\?%(Ej)

1S a conn. cover
@ Sr ~ Conf3(C) and A Stab(P?)r — Sr is univ. cover
O Giveny € my (Sr) +—— b € B3,

v-(0,0(1),0(2))s = (E1, Ez, E3)x

where E,, E;, E3 is obtained by mutation along b.
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Proposition (Informal)

Connected components of strata in d.A Stab correspond to equivalence classes
of SODs up to mutation.
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Proposition (Informal)

Connected components of strata in d.A Stab correspond to equivalence classes
of SODs up to mutation.

This gives us a revised:
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Proposition (Informal)

Connected components of strata in d.A Stab correspond to equivalence classes
of SODs up to mutation.

This gives us a revised:

Heuristic

Given 0y, 19 € Stab(X)/C and corresponding paths 0; and T;, one
hopes 0 and 7; converge to points in the same connected component
of dA Stab(X), giving a canonical mutation class of SOD for D° . (X).

coh

4
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Thank you!

Thank you for listening!
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